
Detailed Provenance Metadata from Statistical Analysis Software

George Alter, University of Michigan Jack Gager, Metadata Technology North America.

Pascal Heus, Metadata Technology North America

Carson Hunter, Metadata Technology North America. Sanda Ionescu, University of Michigan

 Jeremy Iverson, Colectica H V Jagadish, University of Michigan

Bertram Ludaescher, University of Illinois Urbana-Champaign Jared Lyle, University of Michigan

Timothy McPhillips, University of Illinois Urbana-Champaign

Alexander Mueller, University of Michigan Sigve Nordgaard, Norwegian Centre for Research Data

Ørnulf Risnes, Norwegian Centre for Research Data Dan Smith, Colectica

Jie Song, University of Michigan Thomas Thelen, University of California Santa Barbara

Abstract

We have created a set of tools for automating the extraction

of fine-grained provenance from statistical analysis software

used for data management. Our tools create metadata about

steps within programs and variables (columns) within data-

frames in a way consistent with the ProvONE extension of

the PROV model. Scripts from the most widely used statis-

tical analysis programs are translated into Structured Data

Transformation Language (SDTL), an intermediate language

for describing data transformation commands. SDTL can be

queried to create histories of each variable in a dataset. For

example, we can ask, “Which commands modified variable

X?” or “Which variables were affected by variable Y?”

SDTL was created to solve several problems. First, research-

ers are divided among a number of mutually unintelligible

statistical languages. SDTL serves as a lingua franca provid-

ing a common language for downstream applications. Sec-

ond, SDTL is a structured language that can be serialized in

JSON, XML, RDF, and other formats. Applications can read

SDTL without specialized parsing, and relationships among

elements in SDTL are not defined by an external grammar.

Third, SDTL provides general descriptions for operations

that are handled differently in each language. For example,

the SDTL MergeDatasets command describes both earlier

languages (SPSS, SAS, Stata), in which merging is based on

sequentially sorted files, and recent languages (R, Python)

modelled on SQL. In addition, we have developed a flexible

tool that translates SDTL into natural language. Our tools

also embed variable histories including both SDTL and natu-

ral language translations into standard metadata files, such as

Data Documentation Initiative (DDI) and Ecological

Metadata Language (EML), which are used by data reposito-

ries to inform data catalogs, data discovery services, and

codebooks. Thus, users can receive detailed information

about the effects of data transformation programs without un-

derstanding the language in which they were written.

1. Introduction

There is often a need to add provenance to metadata files in

standard formats (Data Documentation Initiative (DDI) [1],

Ecological Metadata Language (EML) [2]) to record data

modifications. This is a common issue in the social sciences

and other domains. Data repositories rely on metadata which

is often expressed in XML, for data catalogs, codebooks, and

other tools. However, metadata files are difficult and time-

consuming to update when the data are modified. Conse-

quently, provenance information is lost or expressed in irreg-

ular and inconsistent ways.

To address this need, the “Continuous Capture of Metadata

for Statistical Data” (C2Metadata) Project (NSF ACI-

1640575) has created a set of tools for automating the extrac-

tion of fine-grained provenance from statistical analysis soft-

ware used for data management. Our tools create metadata

about steps within programs and variables (columns) within

datasets (“dataframes”), which allow the creation of histories

for derived and transformed variables. Variable histories can

be used by data creators to audit their work processes and by

data repositories to populate data discovery services, code-

books, and other tools. This paper describes some of the les-

sons learned about creating granular provenance metadata

and representing it in a standard format.

Our approach uses Structured Data Transformation Language

(SDTL) as an intermediate language for describing data

transformation commands [3]. Scripts from the most widely

used statistical analysis programs (SPSS [4], SAS [5], Stata

[6], R [7], and Python [8]) are translated into SDTL, and

SDTL is added to XML files in supported metadata formats

(DDI, EML). SDTL has been developed as a set of JSON

schemas, which can be serialized into XML, RDF, or other

formats. SDTL can be queried to create histories of each var-

iable in a dataset. For example, we can ask, “Which com-

mands modified variable X?” or “Which variables were af-

fected by variable Y?” There is also a C2Metadata tool for

translating SDTL into natural language. SDTL has been

adopted by the DDI Alliance into its suite of international

standards, which means that it will be maintained and up-

dated in the future [9].

In this paper, we first briefly describe the tools in C2Metadata

that do all the work mentioned above. Then, we focus on

SDTL, its relationship to ProvONE, and the lessons we

learned in developing it as a lingua franca.

2. C2Metadata Workflow

The C2Metadata workflow has been implemented in a set of

open-source tools (see Figure 1), which are also available by

API.

2.1. Parsers

Parsers read a script in a statistical analysis language and

translate it into SDTL JSON. We have developed Parsers for

five widely used statistical analysis languages: SPSS, SAS,

Stata, R, and Python, because each language requires a sepa-

rate Parser adapted to its particular syntax. All of the Parsers

use standard programming techniques that convert the source

language into an abstract syntax tree and apply visitor meth-

ods for creating SDTL by referring to a language-dependent

predefined translation mapping. Our focus has been on data

transformation commands, which are a manageable subset of

each language commonly used for data management tasks.

For R and Python, which have many user-contributed librar-

ies, we focus on the base languages and the most common

data transformation libraries, tidyverse [10] in R and Pandas

[11] in Python.

2.2. Updaters

Updaters modify a metadata file to reflect the changes to a

data file described in an SDTL script. Like the Parsers,

Updaters are specific to each metadata standard, and we have

created Updaters for both DDI and EML, which are ex-

pressed in XML. The Updater reads an original XML

metadata file for each data file, and converts it to a custom

representation of the dataset. The Updater classifies com-

mands in the SDTL script based on the actions that they per-

form: updates a dataset or variable, deletes a variable, selects

variables to work on, saves a dataset, etc. Some SDTL com-

mands are assigned to more than one of these categories. The

Updater then processes the SDTL commands in order, per-

forming the specified actions on the relevant metadata object.

The Updater also traverses the SDTL to create a history of

every prior command and variable that affected the state of

each variable saved to an external file. SDTL commands are

also translated into natural language by the Pseudocode

Translator. Finally, an updated XML file is created, which

includes both variable histories and natural language transla-

tions of SDTL commands.

2.3 Pseudocode Translator

The Pseudocode Translator makes natural language transla-

tions of SDTL commands. Translations are created by a fill-

in-the-blank approach. A template for every SDTL command

is available in the C2Metadata Pseudocode Library. Tem-

plates consist of text surrounding locations for inserting the

values of properties of SDTL commands.

2.4. Codebook Formatter

To demonstrate the capabilities of SDTL-enhanced metadata

files, we have created a tool that generates an interactive

codebook from a DDI XML file. The codebook includes an

entry for each variable in the data file with any available

metadata (e.g. variable and value labels). If the variable was

Figure 1. C2Metadata Workflow

created or modified by commands in the SDTL script, a var-

iable history listing all relevant commands is included in the

codebook entry. Variables in these commands are connected

to the variable history by hyperlinks pointing to other places

in the codebook. The codebook includes entries describing

the data before transformations were performed and entries

for temporary variables (or variables in intermediate states)

that were not in the saved version of the data file.

2.5. Data Transformation Recorder

The Recorder orchestrates all of the other applications. The

Recorder calls the appropriate Parser and Updater and passes

intermediate files to APIs in the correct sequence. Recorders

take two inputs: a metadata file and a data transformation

script. The outputs produced are an SDTL version of the

script, an updated metadata file, and an HTML codebook.

3. Structured Data Transformation Language
(SDTL)
SDTL, which plays a central role in the C2Metadata work-

flow, was created to solve two problems. First, researchers

are divided among a number of mutually unintelligible statis-

tical languages. Scientists tend to be divided among the five

main statistical languages by discipline. For example, 70 per-

cent of scripts submitted in support of articles published by

American Economic Association journals use Stata. SPSS is

widely used in some disciplines, because it is easy to learn,

and SAS has a strong following among producers of survey

data and in some biomedical specialties. R and Python,

which are both used in data science, have different strengths

and weaknesses. SDTL provides a common language for

downstream applications. In addition, we translate SDTL

into natural language, so that users can receive detailed infor-

mation about the effects of data transformation programs

without understanding the language in which they were writ-

ten.

Second, SDTL is a structured language that software applica-

tions can read without parsing. We currently provide SDTL

in JSON, but it can be serialized into XML, RDF, and other

formats. Parsing requires specialized programming tech-

niques, and defining the grammar of a language is a difficult

process. In contrast, SDTL uses tags and delimiters to mini-

mize syntax rules. For example, statistical languages rely on

rules to define the order of precedence of arithmetic opera-

tions in expressions like “y = a + b/c”. Arithmetic operations

are described by functions in SDTL, which are nested to

make the order of operations unambiguous. In this example,

SDTL shows the precedence of the division function by nest-

ing it inside the addition function.

4. SDTL and PROV

With partners from the Whole Tale Project, we have been in-

vestigating how SDTL can be used in the PROV framework

[12]. Thomas Thelen has written an application that converts

SDTL JSON into SDTL RDF, which can be queried with

SPARQL and other tools. Figure 2 shows a graph created

from SDTL of a simple Python program that converts a tem-

perature on the Fahrenheit scale into equivalents on the Cel-

sius and Kelvin scales. SDTL RDF can be queried to answer

questions like: “Which commands affected variable X?” and

“Which derived variables were affected by variable Y?”

The detailed nature of SDTL is an advantage for representing

complex commands, but it creates challenges for querying

SDTL RDF. SDTL expressions are often nested several lay-

ers deep. Even if we are only interested in finding variable

names, we need to account for every level that may include a

Figure 2. Graph of a Python Script Derived from SDTL RDF

variable name. Consequently, SPARQL queries on SDTL

RDF can be very long and complicated.

Due to the specialization, simplicity and community usage of

the ProvONE [13] data model, we are investigating mappings

between ProvONE and SDTL. ProvONE's focus on describ-

ing provenance of data makes it a natural framework for rep-

resenting the generation and usage of script artifacts. This al-

lows for powerful queries about the lineage of data such as

"Which commands modified a particular dataframe?" and

"Which derived variables were affected by a particular origi-

nal variable?". Queries of this kind focus on just a few classes

and relations from the SDTL ontology, which have analogs

in ProvONE. ProvONE supports both retrospective and pro-

spective provenance. SDTL can be represented in both retro-

spective and prospective ProvONE, but the full detail of

SDTL may not be needed for most Prov queries.

In the retrospective model, source code commands are repre-

sented by the provone:Execution class which are analogous

to the sdtl:Command class. Representing nested commands

is also possible by introducing hierarchy on the prov:Entity

by using the prov:hadMember relation to declare that there is

a child command. The prov:Entity class along with the

prov:used and prov:wasGeneratedBy relations are enough to

make assertions about the usage and generation of data.

Describing the SDTL as prospective provenance is also pos-

sible. The sdtl:Command class maps to the provone:Program

class. The prospective analog to prov:hadMember is

provone:hasSubProgram which gives rise to hierarchical

structure support in a similar fashion. provone:Port classes

represent data and map to sdtl:Variable classes.

provone:Channel objects act as intermediate nodes between

ports that are used by subsequent commands. The ports and

channels are connected to provone:Program nodes via

provone:hasInPort and provone:hasOutPort.

Our next step will be developing a path from SDTL RDF into

ProvONE RDF to allow queries written for ProvONE, which

are relatively simple, to be executed on SDTL RDF. We an-

ticipate that reasoning implemented as SPARQL CON-

STRUCT queries will be required to map between SDTL da-

taframes and variables on one hand and ProvONE channels

and ports on the other hand.

5. Lessons
SDTL was created to represent common data transformation

operations in five languages, and we learned a number of use-

ful lessons about similarities and differences among these

languages.

5.1. Function Library

The SDTL Function Library is possibly the most important

way that we simplified the task of translating statistical lan-

guages into SDTL. All statistical languages use functions to

perform common operations, like computing the logarithm of

a number or the sine of an angle. Most of these operations

are familiar, and we decided that recognizable explanations

are more appropriate provenance than translating functions

into a sequence of SDTL commands. We created a list of

equivalent SDTL functions with natural language translations

for each one. The Function Library is an externally stored

crosswalk between functions in each of the source languages

and the SDTL representations of the same functions. Thus,

LN(x) in SPSS and log(x) in R both translate into natural log-

arithm(x) in SDTL. A script Parser can search the Function

Library to find the SDTL version of a function, which also

shows how parameters in the source language function are

inserted into the SDTL function. Although there are excep-

tions in each source language, Parsers can use the same pro-

gram code for many functions.

The boundary between functions and commands varies, and

a function in one language may be a command in another.

For example, in R the select() function is used to select a sub-

set of columns, but this operation is a command in most other

languages. In SDTL subsetting columns is performed by the

KeepVariables and DropVariables commands.

5.2. Temporary variables

The dataset received by a data repository may not include

variables that played important roles in creating or modifying

other variables. For example, the items used to construct an

index may be dropped after the index is created. Similarly,

some variables remaining in the final dataset were changed

several times before reaching their final values. For example,

an income variable may be indexed for inflation and then re-

coded into categories. The C2Metadata workflow allows

metadata to include information about variables not included

in the final state of the dataset. Since we begin with metadata

describing the data before transformations were performed,

the updated metadata file can include descriptions of varia-

bles that were dropped from the final dataset.

We take advantage of a feature in the DDI metadata standard

that allows a single XML file to describe multiple data files.

Each file has an ID, and a variable description refers to the

ID of the file in which it is found. Variables also have IDs,

which are separate from the variable name. Using these fea-

tures, both the pre- and post-transformation versions of the

metadata can be included in the DDI XML file. The interac-

tive Codebook uses these features to hyperlink derived vari-

ables to the variables used to construct them.

We also use variable and file IDs to describe multiple states

of variables that are changed more than once. It is common

for the values of a variable to be modified under the same

variable name. By stepping through the SDTL script, it is

possible to create a new ID and description for a variable

every time that its contents change.

5.3. Iterating by rows

Most data transformation commands in statistical analysis

software are designed to operate iteratively on every row in a

dataframe. For example, a simple assignment statement, like

“varX = varA + varB”, implies that the value of varX on each

row is derived from the values of varA and varB on the same

row. However, commands that apply to an entire dataframe

or file (e.g. append or merge commands) or to metadata (e.g.

print format commands) are not iterative.

The difference between iterative and non-iterative commands

is not always apparent. For example, these commands in the

Stata language appear to be identical:

if varX>5 replace varY=3 /*** Version 1 *****/

replace varY=3 if varX>5 /*** Version 2 *****/

Both commands change the value of varY to 3 if the condition

varX>5 is true, but the order of “if” and “replace” affects how

Stata evaluates the condition and modifies the data. The

Stata “if” command evaluates the condition only once, using

the value of varX on the first row in the dataset, and then ap-

plies the command to all rows in the dataset. When “if” fol-

lows a Stata command, it is evaluated separately on each row,

and the command is executed only on rows where it is true.

These outcomes are illustrated in Figures 3 and 4.

In SDTL we created two kinds of “if…then” commands to

distinguish between iterative and non-iterative operations.

The “DoIf” command is evaluated once for the entire dataset,

and the “IfRows” command is evaluated separately on each

row.

5.4. Bridging languages by adding detail

Sometimes SDTL harmonizes commands from various lan-

guages by specifying properties in greater detail than in any

of the source languages. The SDTL MergeDatasets com-

mand, which combines rows from multiple dataframes to

make a single dataframe, illustrates this approach. The ear-

lier statistical languages (SPSS, SAS, Stata) approached

merging rows as a sequential process of matching rows from

pre-sorted files. More recent languages (R, Python), which

are modelled on SQL, use the language of “inner” and “outer”

joins. The difference between these approaches is most ap-

parent when keys are not used to match rows across data-

frames. In the older languages, a merge that does not use

keys will match rows sequentially from each dataframe, such

that row i in dataframe A is matched to row i in dataframe B.

If keys are omitted from R and Python, the result is a Carte-

sian join in which every row in dataframe A is matched to

every row in dataframe B. Most results can be achieved by

both approaches, but the language used to describe them is

very different.

The SDTL MergeDatasets command provides a framework

that covers all five languages by relying on specific proper-

ties rather than syntax and grammar. For example, “inner”,

“outer”, “right”, and “left” joins indicate when a new output

row is created for unmatched input rows. In SDTL, each con-

tributing dataframe has a NewRow property, which is True if

an unmatched row from this input will result in a row in the

output dataframe. Thus, an outer join is described by setting

the NewRow property to True for all input dataframes, and

an inner join sets all NewRow properties to False. Similarly,

in SDTL, variables can be renamed as part of the MergeDa-

tasets command. In R and Python, this happens automatically

when a variable with the same name appears in more than one

input dataframe, but SPSS, SAS, and Stata have rules about

which dataframe takes precedence. We created an “SDTL

Merge Gallery” which currently includes 38 examples to help

application developers understand how to map various lan-

guages into SDTL.

6. Limitations

Software developed by the C2Metadata Project has several

limitations. Our Parsers for the R and Python languages only

include the base and tidyverse and Pandas libraries. The

workflow described above operates only on metadata, which

also limits functionality in several ways. However, these are

limitations of software and not of the SDTL standard. The

primary limitation of SDTL relates to data created by statis-

tical analysis commands, like predicted values from regres-

sion models, which we hope to address in a future project.

7. Conclusions

While arbitrarily rich manipulations are possible, limited

only by the expressive power of the transformation language

Figure 3. Outcome of Stata

“if varX>5 replace varY=3”

Figure 4. Outcome of Stata

“replace varY=3 if varX>5”

used, only a small subset of these are actually used in typical

practice. We have designed SDTL to cover this typical set.

Even so, we had several non-trivial translational challenges

to address such as those described in this paper. However,

having done that, we now have a flexible set of tools for de-

riving provenance from statistical transformations.

Acknowledgement

“Continuous Capture of Metadata for Statistical Data Pro-

ject” is funded by National Science Foundation grant ACI-

1640575. "Merging Science and Cyberinfrastructure Path-

ways: The Whole Tale" is funded by National Science Foun-

dation grant OAC 1541450.

Access

Software described above is available in a Gitlab repository

at https://gitlab.com/c2metadata. SDTL documentation and

specifications are available at https://ddialliance.org/prod-

ucts/sdtl/1.0.

References

1. Vardigan, M., P. Heus, and W. Thomas, Data

documentation initiative: Toward a standard for the

social sciences. International Journal of Digital

Curation, 2008. 3(1).

2. E.H. Fegraus, S.A., M.B. Jones, M. Schildhauer,

Maximizing the value of ecological data with

structured metadata: an introduction to ecological

metadata language (EML) and principles for

metadata creation. Bulletin of the Ecological

Society of America, 2005. 86: p. 158–168.

3. Alter, G., et al., Provenance metadata for statistical

data: An introduction to Structured Data

Transformation Language (SDTL). IASSIST

Quarterly, 2020. 44(4).

4. IBM Corp., IBM SPSS Statistics for windows,

version 26.0. 2019, IBM Corp.: Armonk, NY.

5. SAS Institute, SAS®9.4 Product Documentation.

2015, SAS Institute Inc.: Cary, NC.

6. StataCorp., Stata Statistical Software: Release 16.1.

2020, StataCorp LP: College Station, TX.

7. R Core Team, R: A Language and Environment for

Statistical Computing. 2013, R Foundation for

Statistical Computing: Vienna, Austria.

8. Python Software Foundation, Python Language

Reference, version 3.8. 2019: Beaverton, OR.

9. DDI Alliance. Structured Data Transformation

Language. 2020 December 1, 2020 January 21,

2021]; Available from:

https://ddialliance.org/products/sdtl/1.0.

10. Wickham, H., et al., Welcome to the Tidyverse.

Journal of Open Source Software, 2019. 4(43): p.

1686.

11. The pandas development team, pandas-dev/pandas:

Pandas. 2020, Zenodo.

12. Groth, P. and L. Moreau, PROV-OVERVIEW: An

Overview of the PROV Family of Documents, in

W3C Note. 2013.

https://gitlab.com/c2metadata
https://ddialliance.org/products/sdtl/1.0
https://ddialliance.org/products/sdtl/1.0
https://ddialliance.org/products/sdtl/1.0

