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Abstract 

We have created a set of tools for automating the extraction 

of fine-grained provenance from statistical analysis software 

used for data management.  Our tools create metadata about 

steps within programs and variables (columns) within data-

frames in a way consistent with the ProvONE extension of 

the PROV model.  Scripts from the most widely used statis-

tical analysis programs are translated into Structured Data 

Transformation Language (SDTL), an intermediate language 

for describing data transformation commands.  SDTL can be 

queried to create histories of each variable in a dataset.  For 

example, we can ask, “Which commands modified variable 

X?” or “Which variables were affected by variable Y?”  

SDTL was created to solve several problems.   First, research-

ers are divided among a number of mutually unintelligible 

statistical languages.  SDTL serves as a lingua franca provid-

ing a common language for downstream applications.  Sec-

ond, SDTL is a structured language that can be serialized in 

JSON, XML, RDF, and other formats.  Applications can read 

SDTL without specialized parsing, and relationships among 

elements in SDTL are not defined by an external grammar.  

Third, SDTL provides general descriptions for operations 

that are handled differently in each language.  For example, 

the SDTL MergeDatasets command describes both earlier 

languages (SPSS, SAS, Stata), in which merging is based on 

sequentially sorted files, and recent languages (R, Python) 

modelled on SQL.  In addition, we have developed a flexible 

tool that translates SDTL into natural language.  Our tools 

also embed variable histories including both SDTL and natu-

ral language translations into standard metadata files, such as 

Data Documentation Initiative (DDI) and Ecological 

Metadata Language (EML), which are used by data reposito-

ries to inform data catalogs, data discovery services, and 

codebooks.  Thus, users can receive detailed information 

about the effects of data transformation programs without un-

derstanding the language in which they were written. 

 

 

 

1. Introduction 

There is often a need to add provenance to metadata files in 

standard formats (Data Documentation Initiative (DDI) [1], 

Ecological Metadata Language (EML) [2]) to record data 

modifications.  This is a common issue in the social sciences 

and other domains.   Data repositories rely on metadata which 

is often expressed in XML, for data catalogs, codebooks, and 

other tools.  However, metadata files are difficult and time-

consuming to update when the data are modified.   Conse-

quently, provenance information is lost or expressed in irreg-

ular and inconsistent ways.    

To address this need, the “Continuous Capture of Metadata 

for Statistical Data” (C2Metadata) Project (NSF ACI-

1640575) has created a set of tools for automating the extrac-

tion of fine-grained provenance from statistical analysis soft-

ware used for data management.  Our tools create metadata 

about steps within programs and variables (columns) within 

datasets (“dataframes”), which allow the creation of histories 

for derived and transformed variables.  Variable histories can 

be used by data creators to audit their work processes and by 

data repositories to populate data discovery services, code-

books, and other tools.  This paper describes some of the les-

sons learned about creating granular provenance metadata 

and representing it in a standard format. 

Our approach uses Structured Data Transformation Language 

(SDTL) as an intermediate language for describing data 

transformation commands [3].  Scripts from the most widely 

used statistical analysis programs (SPSS [4], SAS [5], Stata 

[6], R [7], and Python [8]) are translated into SDTL, and 

SDTL is added to XML files in supported metadata formats 

(DDI, EML).  SDTL has been developed as a set of JSON 

schemas, which can be serialized into XML, RDF, or other 

formats.  SDTL can be queried to create histories of each var-

iable in a dataset.  For example, we can ask, “Which com-

mands modified variable X?” or “Which variables were af-

fected by variable Y?”  There is also a C2Metadata tool for 

translating SDTL into natural language.  SDTL has been 

adopted by the DDI Alliance into its suite of international 



standards, which means that it will be maintained and up-

dated in the future [9].   

In this paper, we first briefly describe the tools in C2Metadata 

that do all the work mentioned above.  Then, we focus on 

SDTL, its relationship to ProvONE, and the lessons we 

learned in developing it as a lingua franca. 

 

2. C2Metadata Workflow 

The C2Metadata workflow has been implemented in a set of 

open-source tools (see Figure 1), which are also available by 

API. 

2.1. Parsers   

Parsers read a script in a statistical analysis language and 

translate it into SDTL JSON.  We have developed Parsers for 

five widely used statistical analysis languages: SPSS, SAS, 

Stata, R, and Python, because each language requires a sepa-

rate Parser adapted to its particular syntax.  All of the Parsers 

use standard programming techniques that convert the source 

language into an abstract syntax tree and apply visitor meth-

ods for creating SDTL by referring to a language-dependent 

predefined translation mapping.  Our focus has been on data 

transformation commands, which are a manageable subset of 

each language commonly used for data management tasks.  

For R and Python, which have many user-contributed librar-

ies, we focus on the base languages and the most common 

data transformation libraries, tidyverse [10] in R and Pandas 

[11] in Python.     

2.2. Updaters  

Updaters modify a metadata file to reflect the changes to a 

data file described in an SDTL script.  Like the Parsers, 

Updaters are specific to each metadata standard, and we have 

created Updaters for both DDI and EML, which are ex-

pressed in XML.  The Updater reads an original XML 

metadata file for each data file, and converts it to a custom 

representation of the dataset.  The Updater classifies com-

mands in the SDTL script based on the actions that they per-

form: updates a dataset or variable, deletes a variable, selects 

variables to work on, saves a dataset, etc.  Some SDTL com-

mands are assigned to more than one of these categories.  The 

Updater then processes the SDTL commands in order, per-

forming the specified actions on the relevant metadata object.  

The Updater also traverses the SDTL to create a history of 

every prior command and variable that affected the state of 

each variable saved to an external file.  SDTL commands are 

also translated into natural language by the Pseudocode 

Translator.  Finally, an updated XML file is created, which 

includes both variable histories and natural language transla-

tions of SDTL commands.   

2.3 Pseudocode Translator   

The Pseudocode Translator makes natural language transla-

tions of SDTL commands.  Translations are created by a fill-

in-the-blank approach.  A template for every SDTL command 

is available in the C2Metadata Pseudocode Library.  Tem-

plates consist of text surrounding locations for inserting the 

values of properties of SDTL commands. 

 

2.4. Codebook Formatter  

To demonstrate the capabilities of SDTL-enhanced metadata 

files, we have created a tool that generates an interactive 

codebook from a DDI XML file.  The codebook includes an 

entry for each variable in the data file with any available 

metadata (e.g. variable and value labels). If the variable was 

Figure 1. C2Metadata Workflow 



created or modified by commands in the SDTL script, a var-

iable history listing all relevant commands is included in the 

codebook entry.  Variables in these commands are connected 

to the variable history by hyperlinks pointing to other places 

in the codebook.   The codebook includes entries describing 

the data before transformations were performed and entries 

for temporary variables (or variables in intermediate states) 

that were not in the saved version of the data file.    

2.5. Data Transformation Recorder  

The Recorder orchestrates all of the other applications.  The 

Recorder calls the appropriate Parser and Updater and passes 

intermediate files to APIs in the correct sequence.  Recorders 

take two inputs: a metadata file and a data transformation 

script.  The outputs produced are an SDTL version of the 

script, an updated metadata file, and an HTML codebook.  

3. Structured Data Transformation Language 
(SDTL) 
SDTL, which plays a central role in the C2Metadata work-

flow, was created to solve two problems.   First, researchers 

are divided among a number of mutually unintelligible statis-

tical languages.  Scientists tend to be divided among the five 

main statistical languages by discipline.  For example, 70 per-

cent of scripts submitted in support of articles published by 

American Economic Association journals use Stata.  SPSS is 

widely used in some disciplines, because it is easy to learn, 

and SAS has a strong following among producers of survey 

data and in some biomedical specialties.  R and Python, 

which are both used in data science, have different strengths 

and weaknesses.  SDTL provides a common language for 

downstream applications.  In addition, we translate SDTL 

into natural language, so that users can receive detailed infor-

mation about the effects of data transformation programs 

without understanding the language in which they were writ-

ten.     

Second, SDTL is a structured language that software applica-

tions can read without parsing.  We currently provide SDTL 

in JSON, but it can be serialized into XML, RDF, and other 

formats.  Parsing requires specialized programming tech-

niques, and defining the grammar of a language is a difficult 

process.  In contrast, SDTL uses tags and delimiters to mini-

mize syntax rules.  For example, statistical languages rely on 

rules to define the order of precedence of arithmetic opera-

tions in expressions like “y = a + b/c”.  Arithmetic operations 

are described by functions in SDTL, which are nested to 

make the order of operations unambiguous.  In this example, 

SDTL shows the precedence of the division function by nest-

ing it inside the addition function.   

4. SDTL and PROV 

With partners from the Whole Tale Project, we have been in-

vestigating how SDTL can be used in the PROV framework 

[12].  Thomas Thelen has written an application that converts 

SDTL JSON into SDTL RDF, which can be queried with 

SPARQL and other tools.  Figure 2 shows a graph created 

from SDTL of a simple Python program that converts a tem-

perature on the Fahrenheit scale into equivalents on the Cel-

sius and Kelvin scales.   SDTL RDF can be queried to answer 

questions like: “Which commands affected variable X?” and 

“Which derived variables were affected by variable Y?”   

The detailed nature of SDTL is an advantage for representing 

complex commands, but it creates challenges for querying 

SDTL RDF.  SDTL expressions are often nested several lay-

ers deep.  Even if we are only interested in finding variable 

names, we need to account for every level that may include a 

Figure 2. Graph of a Python Script Derived from SDTL RDF 



variable name.  Consequently, SPARQL queries on SDTL 

RDF can be very long and complicated. 

Due to the specialization, simplicity and community usage of 

the ProvONE [13] data model, we are investigating mappings 

between ProvONE and SDTL. ProvONE's focus on describ-

ing provenance of data makes it a natural framework for rep-

resenting the generation and usage of script artifacts. This al-

lows for powerful queries about the lineage of data such as 

"Which commands modified a particular dataframe?" and 

"Which derived variables were affected by a particular origi-

nal variable?". Queries of this kind focus on just a few classes 

and relations from the SDTL ontology, which have analogs 

in ProvONE. ProvONE supports both retrospective and pro-

spective provenance. SDTL can be represented in both retro-

spective and prospective ProvONE, but the full detail of 

SDTL may not be needed for most Prov queries. 

In the retrospective model, source code commands are repre-

sented by the provone:Execution class which are analogous 

to the sdtl:Command class. Representing nested commands 

is also possible by introducing hierarchy on the prov:Entity 

by using the prov:hadMember relation to declare that there is 

a child command. The prov:Entity class along with the 

prov:used and prov:wasGeneratedBy relations are enough to 

make assertions about the usage and generation of data. 

Describing the SDTL as prospective provenance is also pos-

sible. The sdtl:Command class maps to the provone:Program 

class. The prospective analog to prov:hadMember is 

provone:hasSubProgram which gives rise to hierarchical 

structure support in a similar fashion. provone:Port classes 

represent data and map to sdtl:Variable classes. 

provone:Channel objects act as intermediate nodes between 

ports that are used by subsequent commands. The ports and 

channels are connected to provone:Program nodes via 

provone:hasInPort and provone:hasOutPort. 

Our next step will be developing a path from SDTL RDF into 

ProvONE RDF to allow queries written for ProvONE, which 

are relatively simple, to be executed on SDTL RDF.  We an-

ticipate that reasoning implemented as SPARQL CON-

STRUCT queries will be required to map between SDTL da-

taframes and variables on one hand and ProvONE channels 

and ports on the other hand. 

5. Lessons 
SDTL was created to represent common data transformation 

operations in five languages, and we learned a number of use-

ful lessons about similarities and differences among these 

languages. 

 

5.1. Function Library 

The SDTL Function Library is possibly the most important 

way that we simplified the task of translating statistical lan-

guages into SDTL.  All statistical languages use functions to 

perform common operations, like computing the logarithm of 

a number or the sine of an angle.  Most of these operations 

are familiar, and we decided that recognizable explanations 

are more appropriate provenance than translating functions 

into a sequence of SDTL commands.   We created a list of 

equivalent SDTL functions with natural language translations 

for each one.  The Function Library is an externally stored 

crosswalk between functions in each of the source languages 

and the SDTL representations of the same functions.  Thus, 

LN(x) in SPSS and log(x) in R both translate into natural log-

arithm(x) in SDTL.  A script Parser can search the Function 

Library to find the SDTL version of a function, which also 

shows how parameters in the source language function are 

inserted into the SDTL function.  Although there are excep-

tions in each source language, Parsers can use the same pro-

gram code for many functions.   

The boundary between functions and commands varies, and 

a function in one language may be a command in another.  

For example, in R the select() function is used to select a sub-

set of columns, but this operation is a command in  most other 

languages.  In SDTL subsetting columns is performed by the 

KeepVariables and DropVariables commands.  

5.2. Temporary variables  

The dataset received by a data repository may not include 

variables that played important roles in creating or modifying 

other variables.  For example, the items used to construct an 

index may be dropped after the index is created.  Similarly, 

some variables remaining in the final dataset were changed 

several times before reaching their final values.  For example, 

an income variable may be indexed for inflation and then re-

coded into categories.  The C2Metadata workflow allows 

metadata to include information about variables not included 

in the final state of the dataset.  Since we begin with metadata 

describing the data before transformations were performed, 

the updated metadata file can include descriptions of varia-

bles that were dropped from the final dataset.   

We take advantage of a feature in the DDI metadata standard 

that allows a single XML file to describe multiple data files.  

Each file has an ID, and a variable description refers to the 

ID of the file in which it is found.  Variables also have IDs, 

which are separate from the variable name.  Using these fea-

tures, both the pre- and post-transformation versions of the 

metadata can be included in the DDI XML file.  The interac-

tive Codebook uses these features to hyperlink derived vari-

ables to the variables used to construct them.   

We also use variable and file IDs to describe multiple states 

of variables that are changed more than once.  It is common 

for the values of a variable to be modified under the same 

variable name.   By stepping through the SDTL script, it is 

possible to create a new ID and description for a variable 

every time that its contents change.   



5.3. Iterating by rows 

Most data transformation commands in statistical analysis 

software are designed to operate iteratively on every row in a 

dataframe.  For example, a simple assignment statement, like 

“varX = varA + varB”, implies that the value of varX on each 

row is derived from the values of varA and varB on the same 

row.  However, commands that apply to an entire dataframe 

or file (e.g. append or merge commands) or to metadata (e.g. 

print format commands) are not iterative.    

The difference between iterative and non-iterative commands 

is not always apparent.  For example, these commands in the 

Stata language appear to be identical: 

if varX>5 replace varY=3   /*** Version 1 *****/ 

replace varY=3 if varX>5   /*** Version 2 *****/ 

Both commands change the value of varY to 3 if the condition 

varX>5 is true, but the order of “if” and “replace” affects how 

Stata evaluates the condition and modifies the data.   The 

Stata “if” command evaluates the condition only once, using 

the value of varX on the first row in the dataset, and then ap-

plies the command to all rows in the dataset.  When “if” fol-

lows a Stata command, it is evaluated separately on each row, 

and the command is executed only on rows where it is true. 

These outcomes are illustrated in Figures 3 and 4.   

In SDTL we created two kinds of “if…then” commands to 

distinguish between iterative and non-iterative operations.   

The “DoIf” command is evaluated once for the entire dataset, 

and the “IfRows” command is evaluated separately on each 

row.  

5.4. Bridging languages by adding detail  

Sometimes SDTL harmonizes commands from various lan-

guages by specifying properties in greater detail than in any 

of the source languages.  The SDTL MergeDatasets com-

mand, which combines rows from multiple dataframes to 

make a single dataframe, illustrates this approach.  The ear-

lier statistical languages (SPSS, SAS, Stata) approached 

merging rows as a sequential process of matching rows from 

pre-sorted files.  More recent languages (R, Python), which 

are modelled on SQL, use the language of “inner” and “outer” 

joins.  The difference between these approaches is most ap-

parent when keys are not used to match rows across data-

frames.  In the older languages, a merge that does not use 

keys will match rows sequentially from each dataframe, such 

that row i in dataframe A is matched to row i in dataframe B.  

If keys are omitted from R and Python, the result is a Carte-

sian join in which every row in dataframe A is matched to 

every row in dataframe B.  Most results can be achieved by 

both approaches, but the language used to describe them is 

very different.  

The SDTL MergeDatasets command provides a framework 

that covers all five languages by relying on specific proper-

ties rather than syntax and grammar.  For example, “inner”, 

“outer”, “right”, and “left” joins indicate when a new output 

row is created for unmatched input rows.  In SDTL, each con-

tributing dataframe has a NewRow property, which is True if 

an unmatched row from this input will result in a row in the 

output dataframe.   Thus, an outer join is described by setting 

the NewRow property to True for all input dataframes, and 

an inner join sets all NewRow properties to False.  Similarly, 

in SDTL, variables can be renamed as part of the MergeDa-

tasets command.  In R and Python, this happens automatically 

when a variable with the same name appears in more than one 

input dataframe, but SPSS, SAS, and Stata have rules about 

which dataframe takes precedence. We created an “SDTL 

Merge Gallery” which currently includes 38 examples to help 

application developers understand how to map various lan-

guages into SDTL.  

6. Limitations 

Software developed by the C2Metadata Project has several 

limitations.  Our Parsers for the R and Python languages only 

include the base and tidyverse and Pandas libraries.  The 

workflow described above operates only on metadata, which 

also limits functionality in several ways.  However, these are 

limitations of software and not of the SDTL standard.  The 

primary limitation of SDTL relates to data created by statis-

tical analysis commands, like predicted values from regres-

sion models, which we hope to address in a future project. 

7. Conclusions 

While arbitrarily rich manipulations are possible, limited 

only by the expressive power of the transformation language 

Figure 3.  Outcome of Stata  

“if varX>5 replace varY=3” 

Figure 4. Outcome of Stata  

“replace varY=3 if varX>5” 



used, only a small subset of these are actually used in typical 

practice.  We have designed SDTL to cover this typical set.  

Even so, we had several non-trivial translational challenges 

to address such as those described in this paper.  However, 

having done that, we now have a flexible set of tools for de-

riving provenance from statistical transformations. 
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