
CPR-A Comprehensible Provenance
Record for Verification Workflows

in Whole Tale

Timothy M. McPhillips1(B), Thomas Thelen2, Craig Willis1, Kacper Kowalik3,
Matthew B. Jones2, and Bertram Ludäscher1,3

1 School of Information Sciences, University of Illinois at Urbana–Champaign,
Illinois, USA

tmcphill@illinois.edu
2 NCEAS, University of California at Santa Barbara, Santa Barbara, USA
3 NCSA, University of Illinois at Urbana–Champaign, Illinois , USA

1 Introduction

A growing number of journal publishers verify computational artifacts as part
of the peer-review process [9]. Although the problems of defining and achieving
computational reproducibility have proved troublesome generally [2], the partic-
ular issues publishers aim to detect in this context are well defined. Questions
that representative publishers answer via verification workflows include:

• Is the description in the text and supplementary materials sufficient to enable
others to repeat the reported computations?

• Does repeating the computations yield the reported results?

Platforms such as Binder [4] and Whole Tale [1] provide environments
for assessing reproducibility of computational artifacts by these standards via
approaches analogous to black-box testing of the reported computational work-
flow. A verifier (i.e. a person carrying out the verification workflow) uses informa-
tion provided in the paper to (1) set up the required computational environment;
(2) stage input data; (3) trigger a sequence of automated computations; and (4)
allow these computations to run to completion. The verifier then confirms that
the products of the computations match the description in the paper.

Whole Tale further aims to enable verifiers to observe aspects of how auto-
mated computational workflows produce intermediate and final artifacts. Ulti-
mately this will allow publishers to ask a third general question:

• Is the authors’ description of the roles played by various software components
consistent with the observed flow of data through those components?

This will provide verifiers with capabilities analogous to white-box testing
of the computations reported in a paper. Specifically, it will enable a verifier to
detect cases where the sequence of computational steps and flow of data between
these steps does not conform to the description given in the paper. Here we
demonstrate the tools Whole Tale is using or developing for this purpose.

Work supported by NSF Award OAC-1541450.

c© Springer Nature Switzerland AG 2021
B. Glavic et al. (Eds.): IPAW 2020/IPAW 2021, LNCS 12839, pp. 263–269, 2021.
https://doi.org/10.1007/978-3-030-80960-7_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80960-7_23&domain=pdf
https://doi.org/10.1007/978-3-030-80960-7_23

264 T. M. McPhillips et al.

2 The CPR Toolkit

The Comprehensible Provenance Record (CPR) Toolkit is a suite of tools for
recording, storing, querying, and visualizing the provenance of artifacts produced
by a run of a computational workflow. As the name suggests, a key objective of
the toolkit is to make provenance easily comprehensible, not to systems program-
mers, but to practitioners of a research domain seeking to understand how the
computational artifacts associated with a study in that domain were obtained.

While the primary purpose of CPR at present is to automate the monitoring
and management of provenance-relevant events and records associated with a
Whole Tale recorded run, the toolkit can be deployed in any Linux-based com-
puting environment and used to capture, query, and reason about provenance of
computational artifacts produced in that environment.

CPR employs ReproZip [7] to observe system calls invoked as part of the
recorded run and to record metadata about (1) the operating-system level pro-
cesses comprising the overall computation; (2) the files accessed by these pro-
cesses; and (3) the access mode for file accesses, i.e. whether processes opened
files for reading, writing, or both. ReproZip captures and records all of this infor-
mation in a SQLite database with a schema specific to ReproZip.

Once a recorded run is complete, the cpr command-line utility extracts these
OS-level records from the ReproZip trace, transforms them into RDF triples, and
loads the triples into an RDF dataset in an instance of Blazegraph1. The triples
are expressed using a vocabulary developed to represent provenance information
in the context of Whole Tale recorded runs (Fig. 1).

provone:Execution

prov:Activity

rdfs:subClassOf

wt:TaleRun

rdfs:subClassOf

os:Process

 rdfs:subClassOf

os:childProcessOf

 wt:runProcess

os:Directory

os:hadWorkingDirectory

os:ProgramFile

os:executionOf

os:File

rdfs:subClassOf rdfs:subClassOf

os:DataFile

 rdfs:subClassOf

prov:Entity

provone:Data

rdfs:subClassOf

 rdfs:subClassOf
rdfs:subClassOf

 os:read
 os:wrote

 prov:used

 prov:generated

provone:Program

rdfs:subClassOf

wt:TaleRunScript wt:runScript

provone:Workflow

rdfs:subClassOf

prov:Plan

rdfs:subClassOf

prov:Association

prov:qualifiedAssociationprov:hadPlan

os:Path os:hasPath

provone:wasPartOf

rdfs:subPropertyOf

provone:wasPartOf

Fig. 1. Relationship of key elements of the CPR vocabulary to classes and properties
defined by the PROV and ProvONE vocabularies.

1 https://github.com/blazegraph/database.

https://github.com/blazegraph/database

A Comprehensible Provenance Record for Verification Workflows 265

The CPR vocabulary extends PROV2 and ProvONE [3] with subclasses spe-
cific to Whole Tale to unambiguously represent run-time provenance records
captured from multiple recorded runs and distinct versions of a particular Tale.
CPR can represent this vocabulary either as Datalog facts or as RDF triples.
Because Blazegraph provides an eager reasoner, all triples implied by the sub-
class relationships are generated automatically when loading a CPR trace into
Blazegraph. Consequently, a CPR trace, asserted using the CPR vocabulary, can
be queried in terms of the PROV and ProvONE vocabularies without using a
reasoner at query time.

The CPR toolkit and vocabulary recognize the distinct roles played by partic-
ular files during a run. A simple YAML file is used to declare a run profile that
associates roles with individual files, particular directories, or entire directory
trees. Using these declarations while converting a ReproZip trace to the CPR
vocabulary, the toolkit is able to distinguish data files of scientific significance
from, e.g., shared libraries associated with the operating system or provided by
software dependencies, and automatically mask these (often numerous) files in
queries and visualizations by default.

Finally, the Geist3 report-templating tool is used to pose SPARQL queries
against the Blazegraph instance, to format the query results as reports, and
to create visualizations of query results using Graphviz. Geist queries, reports,
and visualizations may be parameterized. In Whole Tale we plan to create a
predefined set of reports and visualizations following each recorded run.

3 Demonstration

The CPR demo is provided as a Git repository4 and associated Docker image
that enable the examples to be run on Linux, macOS, and Windows-based sys-
tems that have Git, Docker, and GNU Make installed. Each example uses the
CPR toolkit to record OS-level provenance information from a run of a different
computational workflow, to load a Blazegraph instance with the resulting CPR
trace, and to produce a set of reports and visualizations via SPARQL queries.

A Makefile in the top directory of the demo repository provides targets for
pulling the Docker image from Dockerhub (pull-image), building the Docker
image locally (build-image), for running the examples (run-examples), and
for deleting all of the reports, visualizations, and other artifacts generated for
each example (clean-examples). Because the expected results are included in
the repository, successful reproduction of the example products is demonstrated
by issuing the commands make clean-examples and make run-examples and
confirming that git diff reports no differences.

Query results and visualizations for each example provide answers to stan-
dard questions including:

2 https://www.w3.org/TR/prov-dm/.
3 https://github.com/CIRSS/geist.
4 https://github.com/CIRSS/cpr-demo-2021.

https://www.w3.org/TR/prov-dm/
https://github.com/CIRSS/geist
https://github.com/CIRSS/cpr-demo-2021

266 T. M. McPhillips et al.

1. What programs and script invocations occurred as part of the run?
2. What files represent inputs and outputs of the run as a whole?
3. What are the input and output data files for each process in the run?
4. Which files input to a run are used to produce a particular output file?
5. Which run output artifacts are affected by a particular input file?
6. What programs contribute to the production of a particular output artifact?

#!/bin/bash

cat inputs/i1.txt inputs/i2.txt > temp/t12.txt

cat inputs/i1.txt inputs/i2.txt inputs/i3.txt > temp/t123.txt

cat inputs/i4.txt > temp/t4.txt

cat temp/t12.txt > outputs/o12.txt

cat temp/t123.txt temp/t4.txt > outputs/o1234.txt

cat temp/t4.txt > outputs/o4.txt

Fig. 2. Workflow script.

The example computations range from trivial and domain-independent, to
relatively complex and domain-specific. An example of minimal complexity that
still demonstrates key capabilities of CPR is illustrated in Figs. 2 and 3. A simple
bash script (Fig. 2) invokes the cat command six times on different combinations
of three input files to produce three intermediate files and three final output
files. The run profile (Fig. 3a) allows CPR to identify data files and to ignore
system files that are needed to run the script but are otherwise irrelevant to the
questions a verifier typically asks. The visualizations satisfying queries 2 and 3
are included for a run of this script (Fig. 3b and Fig. 3c) and depict the answers
as dataflow graphs. We expect the visualization answering query 3 to be the
main CPR artifact a verifier will use to compare the record of execution with
the description of the computation in a paper. Visualizations answering queries
4 and 5 can be considered subgraphs of the visualization for query 3 limited to
nodes and edges relevant to a single output or input file.

4 Observations

The computations and queries demonstrated here highlight a key challenge in
making provenance useful to domain researchers and verifiers: revealing the small
subset of recorded events that are of direct relevance to the scientific purpose of
an overall computational workflow. At a low level, execution of even a one-line
Python 3 script that prints “Hello World” can involve reading tens of different
files from disk in addition to the single-line Python file that the user supplied.
CPR minimizes such provenance “noise” using SPARQL queries that select files
and processes with particular relationships to other files and processes, optionally
informed further by a user-provided run profile that assigns distinct roles to files

A Comprehensible Provenance Record for Verification Workflows 267

Fig. 3. The run profile (a) indicates that files in the ./temp directory should be hidden
in the “black-box” view (b), but displayed in the “white-box” view (c).

loaded from particular locations on the system. For example, it can be useful to
hide processes that do not themselves read or write data files; a bash script that
serves only to invoke other programs that do process data files can be masked
even in the absence of a profile. The bash script listed in Fig. 2 is not depicted
graphically in Fig. 3b and Fig. 3c because these queries filter out processes that
do not perform I/O on data files.

A second key challenge to making provenance useful to domain specialists is
providing vocabularies that convey the significance of particular processes and
data artifacts in domain-specific terms. PROV and ProvONE provide essen-
tial abstract base classes from which more meaningful provenance vocabularies
can be derived. Domain researchers–and the verifiers of computations reported
in their papers–likely will find views of provenance employing such specialized
vocabularies the most useful. Nevertheless, the base classes are essential for per-
forming general queries that must succeed on traces captured from any domain,
e.g. to answer the question, What are all the files–data files, scripts, executables,
shared libraries, etc.–that must be archived and restored later to repeat the com-
putation? By describing computations in terms of files used to store data and
processes executed on real computers, the CPR vocabulary provides a set of con-
cepts intermediate to the more general ones comprising PROV and ProvONE,
and the more specific concepts of domain-specific vocabularies.

268 T. M. McPhillips et al.

Moreover, deriving the CPR vocabulary from existing standard vocabular-
ies provides multiple options when depositing data and its provenance in public
repositories such as DataONE. Because Blazegraph eagerly infers triples implied
by RDF schema declarations, exporting provenance simply as PROV, or as
ProvONE, or as a combination of PROV, ProvONE, and the CPR vocabularies,
is as simple as performing a trivial CONSTRUCT query that extracts triples
that already exist in the RDF dataset. Finally, much as common base classes
in object-oriented programming languages make it convenient to work with col-
lections of objects that are instances of more specialized classes, we expect that
access to the PROV, ProvONE, and CPR vocabularies when querying prove-
nance expressed in more specialized vocabularies will in many cases simplify
those queries and make them more transparent and reusable.

5 Conclusion

The CPR toolkit aims to make the provenance of computed artifacts compre-
hensible to domain researchers. By highlighting entities these researchers actu-
ally think about when planning and describing computations—data files, pro-
grams, executions, data flows—CPR makes computational traces transparent
and enables others to judge whether computations were performed appropri-
ately.

CPR complements existing tools for recording provenance at the OS level
including ReproZip and SciUnit [8] which employ execution tracing to identify
files that must be packaged to make the computation repeatable on a different
system; and the CamFlow [5] system which captures whole-system provenance
for the purpose of system audit. These tools in turn complement provenance-
recording and management tools that target specific programming languages and
environments, including noWorkflow [6] (for Python), and the Matlab DataONE
Toolbox5. By observing computational steps that occur within processes, these
latter tools provide views of computational provenance that system-level prove-
nance recorders cannot. Making provenance records not just comprehensible but
also comprehensive ultimately will require integrating provenance recording tools
and vocabularies at multiple levels of abstraction and granularity.

References

1. Brinckman, A., et al.: Computing environments for reproducibility: capturing the
“Whole Tale”. FGCS 94, 854–867 (2019)

2. Committee on Reproducibility and Replicability in Science: Reproducibility and
Replicability in Science. The National Academies Press (2019)

3. Cuevas-Vicentt́ın, V., et al.: ProvONE: A PROV Extension Data Model for Scientific
Workflow Provenance (2015)

5 https://github.com/DataONEorg/matlab-dataone.

https://github.com/DataONEorg/matlab-dataone

A Comprehensible Provenance Record for Verification Workflows 269

4. Jupyter, P.: Binder 2.0 - reproducible, interactive, sharable environments for science
at scale. In: Proceedings of 17th Python in Science Conference, vol. 113, p. 120
(2018)

5. Pasquier, T., et al.: Practical whole-system provenance capture. In: Symposium on
Cloud Computing (SoCC 2017). ACM (2017)

6. Pimentel, J.F., Freire, J., Murta, L., Braganholo, V.: Fine-grained provenance collec-
tion over scripts through program slicing. In: Mattoso, M., Glavic, B. (eds.) IPAW
2016. LNCS, vol. 9672, pp. 199–203. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-40593-3 21

7. Rampin, R., Chirigati, F., Shasha, D., Freire, J., Steeves, V.: ReproZip: the repro-
ducibility packer. J. Open Source Softw. 1(8), 107 (2016)

8. That, D.H.T., Fils, G., Yuan, Z., Malik, T.: Sciunits: Reusable Research Objects.
arXiv:1707.05731 [cs], September 2017. arXiv: 1707.05731

9. Willis, C., Stodden, V.: Trust but verify: How to leverage policies, workflows, and
infrastructure to ensure computational reproducibility in publication. Harvard Data
Sci. Rev. 2(4) (2020)

https://doi.org/10.1007/978-3-319-40593-3_21
https://doi.org/10.1007/978-3-319-40593-3_21
http://arxiv.org/abs/1707.05731
http://arxiv.org/abs/1707.05731

	CPR-A Comprehensible Provenance Record for Verification Workflows in Whole Tale
	1 Introduction
	2 The CPR Toolkit
	3 Demonstration
	4 Observations
	5 Conclusion
	References

